Notizen 289

Molar Volumes of LiNO₃-Ca(NO₃)₂ and LiNO₃-Ba(NO₃)₂ Melts

Kazuo Igarashi, Mutsumi Shimada, and Junichi Mochinaga

Department of Synthetic Chemistry, Faculty of Engineering, Chiba University, Chiba-shi, Chiba 260, Japan

Z. Naturforsch. **43a**, 289-290 (1988); received January 9, 1988

The molar volumes of molten LiNO₃-Ca(NO₃)₂ and LiNO₃-Ba(NO₃)₂ mixtures were measured dilatometrically and are represented as functions of composition and temperature.

The densities of several molten binaries of calcium and barium nitrate with alkali metal nitrates have been measured [1]. Binaries with lithium nitrate are not among these because of the low solubility of these alkaline earth nitrates in lithium nitrate and the thermal lability of lithium nitrate. However, it is known that both molten binaries exist in a limited composition and temperature range [2]. The density data of the melts are indispensable in the evaluation of the electronic polarizability [3]. Our interest in the polarization phenomenon induced us to measure the molar volumes of LiNO₃-Ca(NO₃)₂ and LiNO₃-Ba(NO₃)₂ melts.

LiNO₃ and Ba(NO₃)₂ of analytical reagent grade were dried by heating at about 200 °C under reduced pressure for 8 hours. Anhydrous Ca(NO₃)₂ was prepared from Ca(NO₃)₂

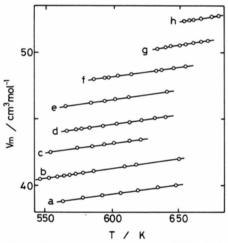


Fig. 1. Molar volumes of molten LiNO $_3$ -Ca(NO $_3$) $_2$ mixture. Circles indicate the observed values and solid lines those calculated from (1). Ca(NO $_3$) $_2$ mol%, a: 0.0, b: 5.1, c: 10.4, d: 15.0, e: 20.0, f: 25.0, f: 29.7, g: 34.9.

Reprint requests to Prof. J. Mochinaga, Department of Synthetic Chemistry, Faculty of Engineering, Chiba University, Chiba-shi, Chiba 260, Japan.

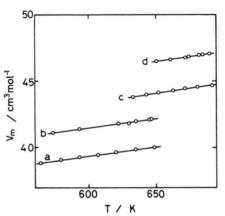


Fig. 2. Molar volumes of molten LiNO₃-Ba(NO₃)₂ mixture. Circles and solid lines have the same meaning as in Figure 1. Ba(NO₃)₂ mol%, a: 0.0, b: 5.0, c: 9.9, d: 15.0.

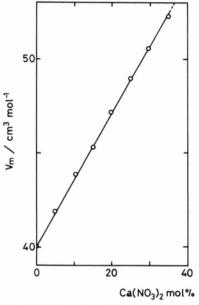


Fig. 3. Molar volume isotherm of molten $LiNO_3$ - $Ca(NO_3)_2$ mixture at 650 K.

Table 1. Parameters of (1) for the binary systems.

LiNO ₃ -Ca(NO ₃) ₂	LiNO ₃ -Ba(NO ₃) ₂
0.31160 E2	0.31160 E2
0.16516 E2	0.10491 E2
-0.16191 E2	-0.16347 E2
0.10064 E2	0.12057 E2
0.13614 E-1	0.13624 E-1
-0.66032 E-2	-0.50119 E-2
0.26759 E-1	0.19896 E-1
-0.17303 E-1	-0.14506 E-1
	0.31160 E2 0.16516 E2 -0.16191 E2 0.10064 E2 0.13614 E-1 -0.66032 E-2 0.26759 E-1

0932-0784 / 88 / 0300-0289 \$ 01.30/0. - Please order a reprint rather than making your own copy.

Dieses Werk wurde im Jahr 2013 vom Verlag Zeitschrift für Naturforschung in Zusammenarbeit mit der Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. digitalisiert und unter folgender Lizenz veröffentlicht: Creative Commons Namensnennung-Keine Bearbeitung 3.0 Deutschland

This work has been digitalized and published in 2013 by Verlag Zeitschrift für Naturforschung in cooperation with the Max Planck Society for the Advancement of Science under a Creative Commons Attribution-NoDerivs 3.0 Germany License.

Zum 01.01.2015 ist eine Anpassung der Lizenzbedingungen (Entfall der Creative Commons Lizenzbedingung "Keine Bearbeitung") beabsichtigt, um eine Nachnutzung auch im Rahmen zukünftiger wissenschaftlicher Nutzungsformen zu ermöglichen.

On 01.01.2015 it is planned to change the License Conditions (the removal of the Creative Commons License condition "no derivative works"). This is to allow reuse in the area of future scientific usage.

290 Notizen

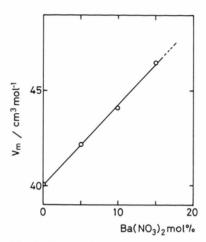


Fig. 4. Molar volume isotherm of molten LiNO₃-Ba(NO₃)₂ mixture at 650 K.

 $^{\circ}4H_2O$ by heating at 230 $^{\circ}C$ in vacuo for a day according to [4]. It was confirmed by DTA and TG that in this way the water was completely removed. Known amounts of the samples were weighed in a glove box filled with dried N_2 gas and then melted in fused silica under N_2 atmosphere at a temperature somewhat above liquidus given in [2]. After mixing by bubbling with N_2 gas, the melt was quenched to prevent

segregation. The molar volumes of the molten mixtures were measured dilatometrically under N_2 atmosphere by a procedure described in detail in [5].

Our results are shown in Figs. 1 and 2. They are restricted to 34.9 mol% LiNO₃ and 15.0 mol% LiNO₃, respectively, because of the thermal decomposition of LiNO₃. The molar volumes of pure molten LiNO₃ are in excellent agreement with those calculated from density data reported by Murgulescu and Zuca [6]. The molar volume for the mixtures can expresses as

$$V_{\rm m} = \sum_{n=0}^{3} a_n X^n + \left(\sum_{n=0}^{3} b_n X^n\right) T,\tag{1}$$

where T is the temperature in K and X the mole fraction of the alkaline earth nitrate. The coefficients, as determined by a least squares fit, are giving in Table 1. In the calculation, reduced mole fractions were used, i.e., the largest mole fraction measured was taken to be unity. The solid lines in Figs. 1 and 2 are obtained from (1). The standard errors as defined in [7] were 0.67 E-1 for $\text{LiNO}_3\text{-Ca}(\text{NO}_3)_2$ and 0.16 E-1 for $\text{LiNO}_3\text{-Ba}(\text{NO}_3)_2$.

Figures 3 and 4 show the molar volumes of these mixtures at 650 K. The molar volumes of the molten binaries of the present alkaline earth nitrates with alkali nitrates having larger cationic radii exhibit positive deviation from additivity [8, 9]. This is not observed for the two LiNO₃ systems in the range of our measurements.

- G. J. Janz, U. Krebs, H. F. Siegenthaler, and R. P. T. Tomkins, J. Phys. Chem. Ref. Data 1, 630 (1972).
- [2] E. M. Levin, C. R. Robbins, and H. F. McMurdie, Phase Diagrams for Ceramists, Ed. M. K. Reser, The American Ceramics Society, 1964, p. 332.
- [3] Y. Iwadate, J. Mochinaga, and K. Kawamura, J. Phys. Chem. 85, 3708 (1981).
- [4] T. Hattori, Y. Iwadate, K. Igarashi, K. Kawamura, and J. Mochinaga, Denki Kagaku 54, 804 (1986).
- [5] J. Mochinaga, K. Igarashi, and Y. Iwadate, J. Chem. Eng. Data 30, 274 (1986).
- [6] I. G. Murgulescu and S. Zuca, Electrochim. Acta 11, 1383 (1966).
- [7] K. Igarashi and J. Mochinaga, Z. Naturforsch. a, in press (1987).
- [8] W. J. McAuley, E. Rhodes, and A. R. Ubbelohde, Proc. Roy. Soc. 289 A, 151 (1966).
- [9] I. G. Murgulescu and S. Zuca, Rev. Roumaine Chem. 2, 227 (1959).